Noninvasive in vivo detection of glutathione metabolism in tumors.

نویسندگان

  • Peter E Thelwall
  • Avner Y Yemin
  • Theresa L Gillian
  • Nicholas E Simpson
  • Mohit S Kasibhatla
  • Zahid N Rabbani
  • Jeffrey M Macdonald
  • Stephen J Blackband
  • Michael P Gamcsik
چکیده

Magnetic resonance spectroscopic imaging has been used to follow glutathione metabolism and evaluate glutathione heterogeneity in intact tumor tissue. Stable isotope-labeled glutathione was detected in s.c. implanted fibrosarcoma tumors in anesthetized rats following infusion of [2-13C]glycine. Using 1H-decoupled 13C magnetic resonance spectroscopy, the appearance of [2-13C]glycine at 42.4 ppm and the subsequent incorporation of this isotope label into the glycyl residue of glutathione at 44.2 ppm can be detected. The identity and relative concentrations of labeled metabolites observed in the in vivo spectrum were confirmed in studies of tissue extracts. The high level of isotopic enrichment and the concentration of glutathione in tumor tissue allow for collection of spatially localized spectra using 13C chemical shift imaging methods. These data provide the first direct images of glutathione in intact tumor tissue and show metabolic heterogeneity. This method may lead to the ability to monitor changes in tumor tissue redox state that may ultimately affect diagnosis, monitoring, and treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer.

How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC-driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorp...

متن کامل

Noninvasive in vivo magnetic resonance measures of glutathione synthesis in human and rat liver as an oxidative stress biomarker

UNLABELLED Oxidative stress (OS) plays a central role in the progression of liver disease and in damage to liver by toxic xenobiotics. We have developed methods for noninvasive assessment of hepatic OS defenses by measuring flux through the glutathione (GSH) synthesis pathway. (13) C-labeled GSH is endogenously produced and detected by in vivo magnetic resonance after administration of [2-(13) ...

متن کامل

Liquid Biopsy as a Minimally Invasive Source of Thyroid Cancer Genetic and Epigenetic Alterations

In the blood of cancer patients, some nucleic acid fragments and tumor cells can be found that make it possible to trace tumor changes through a simple blood test called “liquid biopsy”. The main components of liquid biopsy are fragments of DNA and RNA shed by tumors into the bloodstream and circulate freely( ctDNAs and ctRNAs). tumor cells which are shed into the blood (circulating tumor cells...

متن کامل

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

In vivo assessment of cancerous tumors using boron doped diamond microelectrode

The in vitro and in vivo electrochemical detection of the reduced form of glutathione (L-γ-glutamyl-L-cysteinyl-glycine, GSH) using boron doped diamond (BDD) microelectrode for potential application in the assessment of cancerous tumors is presented. Accurate calibration curve for the determination of GSH could be obtained by the in vitro electrochemical measurements. Additionally, it was shown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 65 22  شماره 

صفحات  -

تاریخ انتشار 2005